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Abstract
Single crystals of the lightly doped spin–Peierls system Cu1−x Cdx GeO3 have
been studied using bulk susceptibility, x-ray diffraction, and inelastic neutron
scattering techniques. We investigate the triplet gap in the magnetic excitation
spectrum of this quasi-one-dimensional quantum antiferromagnet, and its
relation to the spin–Peierls dimerization order parameter. We employ two
different theoretical forms to model the inelastic neutron scattering cross section
and χ ′′(Q, ω), and show the sensitivity of the gap energy to the choice of
χ ′′(Q, h̄ω). We find that a finite gap exists at the spin–Peierls phase transition.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Low-dimensional quantum magnets [1] which display collective singlet ground states are very
topical, due to the exotic low-temperature properties they display, as well as their relation to
high-temperature superconductivity [2]. Quasi-two-dimensional S = 1/2 systems such as
the Shastry–Sutherland system SrCu2(BO3)2 exist [3–6], wherein orthogonal Cu2+ dimers
are arranged on a square lattice. This material displays a collective singlet ground state,
relatively dispersionless triplet excitations and multiple triplet bound excited states. Quasi-
one-dimensional quantum magnets are more common, with S = 1/2 chains based on organic
molecules, such as TTF-CuBDT [7, 8] and MEM-(TCNQ)2 [9, 10], based on Cu2+(3d9),
such as CuGeO3 [11–22], and most recently based on Ti2+(3d1), such as TiOCl [23–25] and
TiOBr [26]. These materials undergo spin–Peierls phase transitions to a singlet ground state
as the temperature is lowered. Related phenomena occurs in quasi-one-dimensional quantum
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magnets with S = 1 chains, such as NENP and CsNiCl3 [27, 28], which enter a Haldane singlet
phase at low temperatures.

CuGeO3 was the first inorganic spin–Peierls system to be discovered. The singlet
ground state associated with CuGeO3 below its spin–Peierls phase transition temperature of
TSP ∼ 14.1 K has been well studied [11–22]. Such a system is characterized by uniform
chains of S = 1/2 moments at high temperatures, which dimerize at low temperature to
allow singlets to form. This phase transition breaks translational symmetry, and a singlet–
triplet gap is introduced into its magnetic excitation spectrum at its magnetic zone centre. It
possesses a much higher magnetic moment density than the pre-existing organic spin–Peierls
systems [7–10], and it can be grown in large single-crystal form by several different growth
techniques. This has enabled detailed neutron scattering studies of the spin–Peierls ground state
and its excitations [18]. CuGeO3 can also be grown in the presence of impurities, and studies
of doped CuGeO3 have revealed the sensitivity of the spin–Peierls ground state to different
types of impurities [11, 29]. In particular, they have revealed a remarkably rich temperature–
impurity-concentration phase diagram in which antiferromagnetic long-range order coexists
with either a dimerized or uniform structure at sufficiently low temperatures [31–38]. This
occurs for both non-magnetic Zn2+ [31–34] and Mg2+ [38] substituting for Cu2+, as well as
for Si4+ [32, 35–37] substituting for Ge4+.

Most of the work on impurities in CuGeO3 has employed dopants which possess a similar
or a smaller ionic radius than that of the host ion which they seek to replace. Zn2+, Mg2+,
and Cu2+ have ionic radii of 0.74 Å, 0.66 Å, and 0.72 Å, respectively. However, some work
has also been done on low-concentration substitution [29] of Cu2+ with Cd2+, whose ionic
radius is much bigger, 0.97 Å, than that of Cu2+. The difference in ionic radii severely limits
the solubility of Cd in CuGeO3; nonetheless small single crystals of Cu1−x Cdx GeO3 with
x � 0.002 were grown and studied [29]. This previous study [29], on small single crystals
grown from a flux, showed little change in TSP, and no coexisting antiferromagnetism at the
low Cd concentrations and base temperature that could be achieved. However, interestingly,
the critical properties of the spin–Peierls phase transition changed from three-dimensional
universality to mean-field behaviour on doping with Cd.

One interesting dimension of the spin–Peierls problem is the relation between the singlet–
triplet gap in the spin excitation spectrum, and the order parameter for dimerization. Cross
and Fisher [39] originally argued for the power-law relation �(T ) ∼ (δ(T ))ν with ν = 2/3.
The discovery of the spin–Peierls state in CuGeO3 has allowed this relationship to be tested
directly using inelastic and elastic neutron scattering to measure the temperature dependence
of the gap energy, �(T ), and the square of the order parameter for the spin–Peierls dimerization
δ2. We report here inelastic neutron scattering measurements of the temperature dependence
of the magnetic excitation spectrum at the magnetic zone centre, and of the x-ray diffraction
measurements of the superlattice Bragg peak intensity, in a new single crystal of lightly doped
Cu1−xCdxGeO3 (x � 0.002). These results show that the simple power-law relation between
the gap and the dimerization order parameter is not obeyed, and that a finite triplet gap exists
at the spin–Peierls phase transition itself.

2. Experimental details

A single crystal of Cu1−xCdx GeO3 with x � 0.002 was grown by the self-flux method in a
floating zone image furnace. The crystal was grown at a rate of ∼5–8 mm h−1 with an oxygen
pressure of 47 kPa. Earlier experience [29] on flux-grown Cu1−x Cdx GeO3 indicated a low
solubility of Cd in the CuGeO3 host. For that reason, naturally occurring Cd was used in the
crystal growth, even though the crystals were intended for neutron scattering studies, and Cd
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Figure 1. SQUID dc susceptibility measurements (with 1000 G applied magnetic field) on CuGeO3

and Cu1−x Cdx GeO3 with x � 0.002 are compared.

has a high neutron absorption cross section. Initial neutron diffraction measurements on the
sample showed strong Bragg scattering, from a high-quality crystal that was single throughout
its volume. Its approximate dimensions were of 30 mm length by 5 mm in diameter, and
the mosaic spread was less than 0.4◦. These measurements confirmed that the crystal was
orthorhombic, with lattice parameters within error the same as those of the pure material:
a = 4.81 Å, b = 8.47 Å and c = 2.94 Å at 4 K.

X-ray diffraction measurements were performed on a small single crystal cut from the
large crystal used in the neutron scattering measurements. The crystal was mounted on the
cold finger of a closed-cycle refrigerator and aligned within a Huber four-circle goniometer.
The measurements with a rotating anode Cu Kα x-ray source and a pyrolytic graphite
monochromator were performed at temperatures from 6.5 to 14.5 K with a temperature stability
of ∼0.005 K. The primary purpose of these measurements was to precisely study the critical
properties of the spin–Peierls order parameter, as measured by the temperature dependence of
the Q = ( 1

2 , 5,− 1
2 ) superlattice Bragg peak intensity, and to determine the critical exponent,

β .
Another small piece of crystal was cut off and used for magnetic characterization with

SQUID magnetometry. The characteristic falloff of the dc susceptibility signifying TSP near
14.1 K was observed. Figure 1 shows the comparison of the normalized susceptibility
measurement for both CuGeO3 and Cu1−x Cdx GeO3 samples as a function of temperature. It
is clear from these data that the susceptibility of the doped sample is very similar to that of
the pure material. At temperatures above TSP, the susceptibility of both samples shows a broad
maximum characteristic of short-range, quasi-one-dimensional correlations. Below 10 K, the
Cu1−xCdxGeO3 susceptibility is ∼20% larger than that of the CuGeO3 sample, indicating that
Cd impurities are indeed present in the system. They have the effect of freeing up individual
spins near the impurities, thereby increasing the susceptibility.

Elastic and inelastic neutron scattering measurements were performed on the large single
crystal of Cu1−x CdxGeO3 at the Canadian Neutron Beam Centre, Chalk River, using the
N5 triple-axis spectrometer. The crystal was mounted in a 3He cryostat with its (0, K , L)

plane coincident with the horizontal scattering plane, such that wavevectors near the Q =
(0, 1, 1

2 ) magnetic zone centre could be accessed. The measurements were made with
pyrolytic graphite as both monochromator and analyser crystals, a fixed final neutron energy of
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Figure 2. X-ray scattering measurements of the superlattice Bragg intensity at Q = ( 1
2 , 5,− 1

2 ) are
shown as a function of temperature. The solid line shows a fit of this temperature dependence to
critical behaviour described in equation (1). We observe mean-field-like behaviour, consistent with
earlier measurements on small flux-grown Cu1−x Cdx GeO3 single crystals [29].

14.7 meV, and with two pyrolytic graphite filters in the scattered beam to reduce higher-order
contamination. Soller slits determined the horizontal collimation and the resulting horizontal
and vertical divergences of the beam were [38, 36, 36, 212] and [58, 73, 146, 636] respectively,
in minutes of arc, using the convention [source–monochromator, monochromator–sample,
sample–analyser, analyser–detector].

Elastic neutron scattering measurements were performed at the magnetic zone centre,
Q = (0, 1, 1

2 ), to search for impurity-induced antiferromagnetic ordering at T = 0.32 K.
No evidence for magnetic ordering was found.

The lack of change in TSP in Cu1−xCdxGeO3 as compared with CuGeO3, as well as
the absence of magnetic order at T = 0.32 K, can be used to set an upper limit for
the Cd concentration in the single-crystal sample of Cu1−x Cdx GeO3. Assuming that the
Cu1−xMgx GeO3 phase diagram [40] is applicable to Cu1−x Cdx GeO3, at least at low doping
concentrations, an upper limit of x � 0.002 can be set.

3. Experimental results and analysis

3.1. X-ray diffraction

We measured the temperature dependence of the Q = ( 1
2 , 5,− 1

2 ) superlattice Bragg peak
intensity, as shown in figure 2 for temperatures close to TSP. This peak arises from the
dimerization pattern within the spin–Peierls state in CuGeO3, and its amplitude is proportional
to the square of the order parameter.

As was done previously to examine the critical properties of doped CuGeO3 [29], this
peak intensity as a function of temperature was fitted to a modified power law as shown in
equation (1). This modified power law includes a correction to scaling term [30], with the
correction to scaling exponent η set to its expected value of 0.5 and t = TSP−T

TSP
.

I = I0t2β (1 + Atη) + Background. (1)

The solid line in figure 2 shows the fit of equation (1) to the data, and clearly this expression
describes the data very well for temperatures close to TSP. The fit gives TSP = 14.15 ± 0.05 K
and a critical exponent β = 0.45±0.02. This value is close to the mean-field value of β = 0.5,
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Figure 3. Constant-Q inelastic neutron scattering scans at the magnetic zone centre Q = (0, 1, 1
2 ),

taken well below TSP at T = 4 K and well above TSP at T = 21 K.

and is much larger than the values for β(∼ 0.33) from three-dimensional universality [41, 42]
that are known to characterize both pure CuGeO3 [19, 20] and lightly doped CuGeO3 in which
the dopants possess similar ionic radii to the host ions they replace [29].

This mean-field result is similar to that found by Lumsden et al [29] in which the critical
behaviour of lightly doped single crystals of Cu1−x Cdx GeO3 grown by the flux method also
showed mean-field critical exponent β values. These results establish that some Cd impurities
are present in the crystal, and also provide a quantitative form for the spin–Peierls order
parameter as a function of temperature, which can then be compared to the temperature
dependence of the triplet gap in the excitation spectrum obtained from inelastic neutron
scattering.

3.2. Neutron scattering

Constant-Q inelastic neutron scattering scans were performed at the magnetic ordering
wavevector Q0 = (0, 1, 1

2 ) in order to observe the temperature dependence of the triplet
excitations at the magnetic zone centre. The energies of the triplet excitations disperse with
wavevector due to the three-dimensional nature of the magnetic system. Near the ordering
wavevector, this dispersion [18] varies with the relative wavevector q = Q − Q0, as

�q =
√

�2 + (vaqa)2 + (vbqb)2 + (vcqc)2 (2)

where � is the minimum triplet excitation energy or gap energy. qa, qb and qc are reduced
wavevectors expressed in reciprocal lattice units, where

vaqa = (�E)a sin(πqa) and (�E)a ≈ 1.66 meV

vbqb = (�E)b sin(πqb/2) and (�E)b ≈ 5.3 meV

vcqc = c0qc and c0 = 80 meV.

Representative data at 4 and 21 K, well below and well above TSP, respectively, are shown
in figure 3, and the low-temperature singlet–triplet gap of � ∼ 2 meV is identified in the
4 K data. At 21 K, the triplet excitation is completely absent and the finite-energy peak in
the inelastic scattering has been replaced with a weak continuum of scattering from quasi-
elastic energies, out to the end of the scan, 4.8 meV. We note that the triplet excitation at low
temperatures exhibits an asymmetric tail to the high-energy side.

5



J. Phys.: Condens. Matter 19 (2007) 436222 S Haravifard et al

Figure 4. Net intensity of the neutron scattering observed at the magnetic zone centre, Q = (0, 1, 1
2 )

and an energy transfer of 0.42 meV is shown. The solid line is a guide to the eye and the vertical
arrows indicate the temperatures at which the low-temperature and high-temperature background
data sets were taken.

Figure 4 shows the temperature dependence of the quasi-elastic scattering at h̄ω =
0.41 meV and at Q = (0, 1, 1

2 ). It shows a ‘critical’ regime which extends from ∼12 to
∼21 K within which quasi-elastic scattering is significantly enhanced compared with either
lower or higher temperatures. We wish to isolate the triplet excitation at Q = (0, 1, 1

2 ), from the
incoherent elastic scattering as well as from the background scattering, and thereby determine
the gap energy, �, as a function of temperature. This requires a background subtraction for
which we have two options. We can use the low-temperature scattering at T = 4 K, suitably
modified to exclude the resolution-limited triplet excitation, or we can use the scattering at
21 K. Each of these has advantages. For the T = 4 K data the triplet excitation is sharp in
energy, and so can be cleanly separated from the remaining scattering, comprised of incoherent
elastic scattering from the sample, and energy-independent background scattering from fast
neutrons. However, the use of the T = 4 K data set as a background does not recognize that
inelastic scattering persists above TSP, albeit in the form of a weak, quasi-elastic spin excitation
spectrum for which the T = 21 K data set is characteristic. In what follows, we employ both
a suitably modified T = 4 K data set (LT background) as well as the T = 21 K data set (HT
background) as the background data set to be subtracted from the signal so as to accurately
estimate the scattering from the triplet excitation alone. This will allow us to examine the
sensitivity of the gap, �(T ), to the method of background scattering estimation.

Figure 5 shows representative constant-Q scans at (0, 1, 1
2 ), for which a high-temperature

or low-temperature data set has been subtracted from the scans at temperatures ranging from
∼0.7 TSP (10 K) to ∼1.1 TSP (15 K). This data was fitted to two different forms for S(Q, ω)

with the intention of determining the temperature dependence of the gap energy, �, and the
inverse lifetime, �, of the triplet excitations. However, a qualitative examination of the data
in figure 5 shows a substantial, well-defined inelastic peak to exist at ∼1.6 or ∼1.8 meV and
T = 13.83 K ∼ 0.98 TSP, depending on whether the low-temperature (LT) or high-temperature
(HT) data set is used as a background. One would qualitatively conclude therefore that the gap
remains finite at TSP in this sample of Cu1−x Cdx GeO3, a result that is borne out by a quantitative
analysis of the excitation spectrum, discussed below.

The inelastic spectra, shown in figure 5, were fitted to two models of S(Q, ω), each of
which was convolved with the four-dimensional instrumental resolution function. The finite
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Figure 5. Representative inelastic spectrum, below and above TC = 14.15 K, and at the magnetic
zone centre Q = (0, 1, 1

2 ) are shown, using the high-temperature data set as background (left-hand
panels), and the low-temperature data set as background (right-hand panels). The lines through
the data show fits of the spectra to a Lorentzian and a damped harmonic oscillator (DHO) form of
S(Q, ω), as described by equations (3) and (4), respectively. The DHO model is clearly superior,
especially at large energies.

resolution of the measurement combines with the dispersion of the triplet excitations to higher
energies at wavevectors away from the magnetic zone centre, equation (2), and results in

7



J. Phys.: Condens. Matter 19 (2007) 436222 S Haravifard et al

the asymmetry of the triplet lineshape, with a high-energy tail. This is accounted for within
our resolution convolution, where we employed the spin wave velocities (see equation (2))
determined previously [18].

The first Lorentzian model was employed by Regnault et al [18], in their analysis of the
temperature dependence of the triplet excitation energy near the magnetic zone centre in pure
CuGeO3. The Lorentzian (Lor) profile is given by

SL(Q, ω) ∼ ω

1 − exp(−ω/kT )

[
�L

(ω − �L)2 + �2
L

+ �L

(ω + �L)2 + �2
L

]
. (3)

The second model was a damped harmonic oscillator (DHO) given by

SD(Q, ω) = χ0�
2π−1

1 − exp(−ω/kT )

[
2ω�

(ω2 − �2)2 + 4ω2�2

]
, (4)

where χ0 is the static susceptibility at Q. For small damping, the relation between the gap
energy in the DHO and Lor models is

�2
L = �2 − �2. (5)

The results of fitting the data to the Lor model and the DHO model are shown as the solid
and dashed lines in figure 5. Both models are reasonable descriptors of the data. However,
the DHO model is a better descriptor as its goodness-of-fit parameter, χ2, is typically 10–
40% lower than for the Lor model at all temperatures. This is because the Lor spectrum,
used earlier [18], falls off too slowly with ω; indeed its integral in frequency is divergent.
We conclude that the inelastic scattering is best described using the DHO form for S(Q, ω),
equation (4).

The values of the gap energy, �, and inverse lifetime, �, of the triplet excitations extracted
from this analysis are plotted as a function of temperature in figure 6. The top panel shows the
parameters resulting from an analysis of the data using the HT background, while the bottom
panel shows the parameters relevant to the LT background. As can be seen from figure 6,
while the background data set used influences the details of the fit parameters, it does not affect
the overall trends and general features of the temperature dependence of the gap and inverse
lifetime of the triplet excitations.

4. Discussion

Our analysis, employing two different forms of S(Q, ω) and two different background
subtractions, results in four forms of the gap energy, �, and inverse lifetime, �, as a function
of temperature, which can then be compared with theoretical expectations. These are plotted
as a function of temperature in figure 6, where the top panel shows the parameters arising
from use of the HT background, and the bottom panel shows those arising from use of the
LT background. As can be seen, the gap energy, � ∼ 2 meV at 4 K, is independent of both
the form of S(Q, ω) and the details of the background, provided the lifetime of the triplets is
sufficiently long, as it is below T ∼ 10 K. Above ∼10 K, differences between the fitted gap
energies progressively increase as the energy width of the excitations, and hence the inverse
lifetimes, become larger. However, in all four gap versus temperature plots shown in figure 6,
the gap energy, �, does not appear to go to zero at TSP ∼ 14.15 K. Rather, the phase transition
occurs where the gap energy, �, and the energy width or inverse lifetime of the excitation, �,
cross.

Figure 7 shows the gap energy, �, plotted as a function of the spin–Peierls order parameter
as determined from the x-ray scattering determination of the temperature dependence of the
superlattice Bragg peak intensity shown in figure 2. This net intensity is proportional to the
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Figure 6. The temperature dependence of the energy gap, �, and inverse lifetime, �, of the
triplet excitation is shown. The upper panel shows the fit parameters for both the Lorentzian and
DHO models with the high-temperature background subtraction, while the lower panel shows the
parameters extracted using the low-temperature background subtraction.

square of the order parameter, and consequently we have plotted the square root of the net
intensity on the x-axis of figure 7. For reference, an x-axis label has been added to the top of
figure 7 to denote the actual temperature. The top panel of figure 7 shows the analysis using
the DHO form of S(Q, ω), while the bottom panel shows that using the Lorentzian form.

The systematic dependence of the gap on the form of S(Q, ω) and the details of the
background can be seen in figures 6 and 7. As TSP is approached, the DHO form of S(Q, ω)

produces a higher value of the gap energy as compared with the Lorentzian form. For either
form of S(Q, ω), the use of the LT background results in a higher gap energy near TSP, as
compared to when the HT background is used.

As previously discussed, theoretical expectations exist for the relation between the gap
energy and the spin–Peierls order parameter: �(T ) ∼ δ(T )ν with ν = 2

3 . This argument was
originally made by Cross and Fisher [39] in the context of the spin–Peierls transition in TTF-
CuBDT [7, 8]. We have therefore fitted the data shown in figure 7 to �(T ) = �0 +δ(T )ν , with
�0 a free parameter and also with �0 set equal to zero. This latter case, with the gap going
to zero at TSP, is consistent with the original theoretical expectation [39]. The results of fitting
our data to this expression are given in table 1, for all four data sets (DHO and Lor forms of
S(Q, ω), and both HT and LT backgrounds). As can be seen, the fits give a finite value of �0,
the gap energy at TSP, unless it is constrained to be zero. Only one of the four combinations of
S(Q, ω) and background (Lor and HT background) give behaviour which is roughly consistent
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Figure 7. The gap energy, �, as a function of temperature is correlated with the corresponding spin–
Peierls dimerization order parameter, taken as the square root of the net x-ray scattering intensity at
the superlattice reflection Q = ( 1

2 , 5,− 1
2 ). The upper panel shows the parameters resulting from

the DHO form of S(Q, ω), while the lower panel shows the parameters obtained from the Lorentzian
form of S(Q, ω). The lines in the figure are the results of fitting the data to �(T ) = �0 + δ(T )ν ,
with �0 a free parameter, and also with �0 set equal to zero, as described in the text.

Table 1. Values of the exponent ν used to describe the power-law relationship between � and the
order parameter.

HT background LT background

ν �0 ν �0

DHO 0.43 ± 0.06 0.85 ± 0.04 1.0 ± 0.4 1.54 ± 0.04
Lorentzian 0.67 ± 0.02 0.34 ± 0.02 0.82 ± 0.05 0.88 ± 0.02

DHO 0.30 ± 0.03 0 0.13 ± 0.03 0
Lorentzian 0.81 ± 0.04 0 0.48 ± 0.01 0

with �(T ) ∼ δ(T )ν with ν = 2
3 , and this case gives a finite gap at TSP of 0.34 ± 0.02 meV.

The fits using the DHO form of S(Q, ω), which allows for the better-quality description of the
inelastic neutron scattering spectra, give either very low values of the exponent ν, or non-zero
values of the gap at TSP ranging from ∼0.4 to 0.75× the zero-temperature value of the gap.
We therefore conclude that the predicted relation �(T ) ∼ δ(T )ν with ν = 2

3 is not obeyed in
Cu1−xCdxGeO3, and that the gap is finite at TSP.

10
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A question arises as to what role doping plays in this behaviour. Systematic studies
of the Cu1−x Mgx GeO3 have shown a ‘pseudogap’ temperature regime to exist above TSP

for the low dopant concentrations which allow a spin–Peierls transition to occur [40]. This
temperature regime is bordered from below by the appearance of long-range spin–Peierls order,
and from above by signatures indicative of the presence of a gap, such as a suppression in the
susceptibility. This pseudogap regime broadens in temperature with increasing doping until
the spin–Peierls state is lost altogether beyond x ∼ 0.03 in Cu1−xMgx GeO3. The low doping
level present in the Cu1−xCdxGeO3 sample studied here, and the observation of pseudogap-
like behaviour in Cu1−x Mgx GeO3, suggest that the finite gap at TSP may be intrinsic to pure
CuGeO3 as well. Surprisingly, in a previous study [18] the temperature dependence of �(T )

for pure CuGeO3 was found to be consistent with �(T ) ∼ δ(T )ν with ν = 2
3 . However, these

earlier measurements focused on the triplet excitations at a wavevector slightly displaced from
the dimerization zone centre, and employed the less satisfactory Lorentzian form for S(Q, ω)

only. Later measurements and analysis of the triplet excitations at the zone centre in pure
CuGeO3 were shown to be consistent with pseudogap behaviour [21, 22], that is a finite gap at
TSP, although a critical analysis testing the �(T ) ∼ δ(T )ν relation was not performed.

It is notable that pseudo-gap behaviour has also been observed in the unconventional spin–
Peierls material TiOCl [24, 25]. This material exhibits both a low-temperature dimerization
into a singlet ground state below TSP1 and an intermediate temperature phase characterized by
an incommensurate structural distortion. Above this phase transition, a uniform phase exists
which displays characteristics of a finite gap, and the NMR signature for this pseudogap is
maintained to ∼1.3 TSP2 [24].

5. Conclusions

Inelastic neutron scattering and x-ray diffraction measurements were carried out on a lightly
doped sample of Cu1−x Cdx GeO3. These x-ray diffraction measurements of the superlattice
Bragg intensity below TSP confirmed the mean-field behaviour of the spin–Peierls phase
transition in this new large single crystal of Cu1−x Cdx GeO3 grown by floating zone image
furnace techniques. This result is consistent with earlier critical scattering measurements on
small single crystals of Cu1−x Cdx GeO3 grown by flux techniques [29].

The order parameter measurements as a function of temperature were correlated with
inelastic neutron scattering measurements of the singlet–triplet energy gap in this singlet
ground-state system, for the purpose of testing the relationship between the gap energy and the
spin–Peierls order parameter. We investigated the sensitivity of the gap energy extracted from
an analysis of the inelastic scattering to the form used to model S(Q, ω) and to the form of the
background scattering. This analysis showed the inelastic scattering to be best described using
a DHO form for S(Q, ω). We find that the energy gap remains finite at TSP, as opposed to going
to zero, as might have been anticipated on the basis of earlier theoretical expectations [39].

We hope that this result on lightly doped Cu1−xCdxGeO3 can inform and motivate further
work on spin–Peierls and other singlet ground-state systems, and shed light on the formation
of the triplet gap at and above TSP.
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